Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements

نویسندگان

  • Peter D Gatehouse
  • Marijn P Rolf
  • Martin J Graves
  • Mark BM Hofman
  • John Totman
  • Beat Werner
  • Rebecca A Quest
  • Yingmin Liu
  • Jochen von Spiczak
  • Matthias Dieringer
  • David N Firmin
  • Albert van Rossum
  • Massimo Lombardi
  • Juerg Schwitter
  • Jeanette Schulz-Menger
  • Philip J Kilner
چکیده

AIMS Cardiovascular magnetic resonance (CMR) allows non-invasive phase contrast measurements of flow through planes transecting large vessels. However, some clinically valuable applications are highly sensitive to errors caused by small offsets of measured velocities if these are not adequately corrected, for example by the use of static tissue or static phantom correction of the offset error. We studied the severity of uncorrected velocity offset errors across sites and CMR systems. METHODS AND RESULTS In a multi-centre, multi-vendor study, breath-hold through-plane retrospectively ECG-gated phase contrast acquisitions, as are used clinically for aortic and pulmonary flow measurement, were applied to static gelatin phantoms in twelve 1.5 T CMR systems, using a velocity encoding range of 150 cm/s. No post-processing corrections of offsets were implemented. The greatest uncorrected velocity offset, taken as an average over a 'great vessel' region (30 mm diameter) located up to 70 mm in-plane distance from the magnet isocenter, ranged from 0.4 cm/s to 4.9 cm/s. It averaged 2.7 cm/s over all the planes and systems. By theoretical calculation, a velocity offset error of 0.6 cm/s (representing just 0.4% of a 150 cm/s velocity encoding range) is barely acceptable, potentially causing about 5% miscalculation of cardiac output and up to 10% error in shunt measurement. CONCLUSION In the absence of hardware or software upgrades able to reduce phase offset errors, all the systems tested appeared to require post-acquisition correction to achieve consistently reliable breath-hold measurements of flow. The effectiveness of offset correction software will still need testing with respect to clinical flow acquisitions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Part Ii Velocity Offsets: Characterization in a Multi-vendor Study

Aims: Cardiovascular magnetic resonance (CMR) allows non-invasive phase contrast measurements of flow through planes transecting large vessels. However, some clinically valuable applications are highly sensitive to errors caused by small offsets of measured velocities if these are not adequately corrected, for example by the use of static tissue or static phantom correction of the offset error....

متن کامل

Flow measurement by magnetic resonance: a unique asset worth optimising.

Users and manufacturers of cardiovascular magnetic resonance (CMR) systems have, potentially, an unrivalled asset. Phase contrast mapping of velocities through planes transecting the great arteries should provide the most accurate measurements available of cardiac output, shunt flow, aortic or pulmonary regurgitation and, indirectly, of mitral regurgitation. But the reality is that phase contra...

متن کامل

A multi-center inter-manufacturer study of the temporal stability of phase-contrast velocity mapping background offset errors

BACKGROUND Phase-contrast velocity images often contain a background or baseline offset error, which adds an unknown offset to the measured velocities. For accurate flow measurements, this offset must be shown negligible or corrected. Some correction techniques depend on replicating the clinical flow acquisition using a uniform stationary phantom, in order to measure the baseline offset at the ...

متن کامل

Sequence optimization to reduce velocity offsets in cardiovascular magnetic resonance volume flow quantification - A multi-vendor study

PURPOSE Eddy current induced velocity offsets are of concern for accuracy in cardiovascular magnetic resonance (CMR) volume flow quantification. However, currently known theoretical aspects of eddy current behavior have not led to effective guidelines for the optimization of flow quantification sequences. This study is aimed at identifying correlations between protocol parameters and the result...

متن کامل

Improved accuracy in flow mapping of congenital heart disease using stationary phantom technique

BACKGROUND Flow mapping by cardiovascular magnetic resonance has become the gold standard for non-invasively defining cardiac output (CO), shunt flow and regurgitation. Previous reports have highlighted the presence of inherent errors in flow mapping that are improved with the use of a stationary phantom control. To our knowledge, these studies have only been performed in healthy volunteers. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2010